Mathesis
  • Accueil
  • Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Les transformations linéaires du plan : déterminant, bases et inversion

Les transformations linéaires du plan : déterminant, bases et inversion

par Jean Barbet | Mai 22, 2021 | Algèbre, Géométrie

Les transformations linéaires du plan euclidien sont les applications linéaires inversibles, c’est-à-dire de déterminant non nul. Elles permettent de passer d’une base du plan à une autre, et les transformations orthogonales, c’est-à-dire les...
Les bases du plan euclidien : vecteurs et coordonnées

Les bases du plan euclidien : vecteurs et coordonnées

par Jean Barbet | Mai 7, 2021 | Algèbre, Géométrie

La représentation du plan euclidien par le produit cartésien \(\mathbb R^2\) permet de décomposer tout vecteur du plan en deux coordonnées, son abscisse et son ordonnée. Cette décomposition est liée à un « système de représentation » particulier et naturel,...

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • Histoire de l’infini I : La philosophie grecque
  • Isométries vectorielles du plan euclidien
  • Fonctions continues et théorème des valeurs intermédiaires
  • Algèbre Linéaire : la Surprenante Arithmétisation de l’Espace
  • Fonder l’arithmétique dans la théorie des ensembles

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020