Mathesis
  • Blog
  • About
  • English
    • Français
    • English
Select Page
The Orientation of the Euclidean Plane: Bases and Angles

The Orientation of the Euclidean Plane: Bases and Angles

by Jean Barbet | Jun 22, 2021 | Algebra, Geometry, Non classé

The visual intuition through which we represent the Euclidean plane suggests that we can orient it according to a direction of rotation. This intuition reflects a rigorous mathematical definition of the orientation of the plane, which involves choosing a basis and,...
Russell’s paradox and the emergence of class theory

Russell’s paradox and the emergence of class theory

by Jean Barbet | May 29, 2021 | Logic, Set Theory

Russell’s paradox or antinomy is a very simple paradox in naive set theory, which arises when one tries to define a “set of all sets”. Its resolution relies on the introduction of the notion of class and the distinction of sets among classes. Thanks...
Linear transformations of the plane: determinant, bases and inversion

Linear transformations of the plane: determinant, bases and inversion

by Jean Barbet | May 23, 2021 | Algebra, Geometry

The linear transformations of the Euclidean plane are the invertible linear applications, i.e. of non-zero determinant. They allow us to move from one basis of the plane to another, and the orthogonal transformations, i.e. the vectorial isometries, exchange the...
The bases of the Euclidean plane: vectors and coordinates

The bases of the Euclidean plane: vectors and coordinates

by Jean Barbet | May 8, 2021 | Algebra, Geometry, Non classé

The representation of the Euclidean plane as the Cartesian product \(\mathbb R^2\) allows us to decompose any vector of the plane into two coordinates, its abscissa and its ordinate. This decomposition is linked to a particular and natural “representation...
The Euclidean Space: Points, Vectors, and the Dot Product

The Euclidean Space: Points, Vectors, and the Dot Product

by Jean Barbet | Mar 25, 2021 | Algebra, Geometry, Non classé, Number Theory

Descartes’ analytical method, which allows the Euclidean plane to be represented as the Cartesian product $ \mathbb{R}^2 $ through the theory of real numbers, also makes it possible to represent Euclidean space as the Cartesian product $ \mathbb{R}^3 =...
« Older Entries
Next Entries »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Forgot Password

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Recent publications

  • The Axiom of Infinity: Founding Arithmetic in Set Theory
  • The higher axioms of natural set theory
  • Natural Set Theory: An Ultimate Foundation for Mathematics
  • Counting in the Infinite with Ordinal Numbers
  • The axiomatic construction of natural arithmetic

© MATHESIS – 2020