Mathesis
  • Blog
  • About
  • English
    • Français
    • English
Select Page
An analytic definition of the number π using the cosine

An analytic definition of the number π using the cosine

by Jean Barbet | Feb 20, 2021 | Functions, Number Theory

Introduction When we introduced the circular exponential, the trigonometric functions cosine and sine were defined as its real part and imaginary part. From this, we derived the analytical expressions: \(\cos x=\sum_{n=0}^{+\infty} (-1)^n\dfrac{x^{2n}}{(2n)!}\) and...
The circular exponential and trigonometric functions

The circular exponential and trigonometric functions

by Jean Barbet | Jan 9, 2021 | Analysis, Functions, Non classé

From the complex exponential function, we can define a “circular exponential” function, which “wraps” the real line around the trigonometric circle, and makes it possible to rigorously define the cosine and sine trigonometric functions, which...
Analytic functions and the complex exponential

Analytic functions and the complex exponential

by Jean Barbet | Dec 29, 2020 | Analysis, Functions, Non classé

Some functions that can be differentiated indefinitely can be described ‘around each point’ as the sum of an power series. These are analytic functions, real or complex, the typical example being the exponential function, which can be extended to the whole complex...
Derivating an inverse bijection & the example of the exponential function

Derivating an inverse bijection & the example of the exponential function

by Jean Barbet | Dec 6, 2020 | Analysis, Functions

The relations between the properties of monotonicity, continuity and derivation of a function of one real variable allow us to formally derivate the inverse bijection of an injective and derivable function. The most representative example is perhaps that of the...
Polynomials in one variable: the combinatorial representation of equations

Polynomials in one variable: the combinatorial representation of equations

by Jean Barbet | Sep 16, 2020 | Algebra, Functions, Non classé

Polynomials with one variable are mathematical representations of the expressions used in polynomial equations. They allow algebraic methods to be applied to solving these equations. 1. Equations are “linguistic” objects 1.1 Polynomial equations and number...
Finiteness and Mathematical Infinity : Comparing and Enumerating

Finiteness and Mathematical Infinity : Comparing and Enumerating

by Jean Barbet | Jul 10, 2020 | Functions, Set Theory

A finite set is a set that can be counted using the natural numbers \(1,\ldots,n\) for a certain natural number \(n\). But what is counting ? And then, what is an infinite set? 1.Comparing sets : the notion of bijection The notions of finite set and infinite set, and...
« Older Entries

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Forgot Password

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Recent publications

  • The Axiom of Infinity: Founding Arithmetic in Set Theory
  • The higher axioms of natural set theory
  • Natural Set Theory: An Ultimate Foundation for Mathematics
  • Counting in the Infinite with Ordinal Numbers
  • The axiomatic construction of natural arithmetic

© MATHESIS – 2020