la Règle et le Compas
Blog Mathématique
Ensembles
Fonctions continues et théorème des valeurs intermédiaires
Les fonctions continues à valeurs réelles forment le concept fondamental de l'analyse réelle et de la topologie. Or, si la notion de continuité est transparente sur le plan de l'intuition, sa formulation mathématique nécessite une traduction, par exemple à travers la...
Fonder l’arithmétique dans la théorie des ensembles
Nous explorons la fondation de l'arithmétique naturelle en partant des axiomes de Peano au sein de la théorie des ensembles, révélant une approche innovante pour conceptualiser les nombres entiers naturels. Nous questionnons l'usage traditionnel des ordinaux et...
Les axiomes supérieurs de la théorie naturelle des ensembles
En nous appuyant sur les notions d'objet et de classe issues de la logique naturelle, nous avons redéfini le concept d'ensemble de manière intuitive. Ainsi, nous avons établi une théorie naturelle des ensembles sans recourir à la logique formelle. Cette approche se...
La théorie (naturelle) des ensembles : un fondement ultime pour les mathématiques
La révolution des mathématiques est celle de la théorie des ensembles, qui répond à la fois au problème d'un langage conceptuel universel et rigoureux, et à celui d'un fondement unique pour toutes les disciplines mathématiques. Si la théorie des ensembles est l'œuvre...
Structure et topologie de la droite réelle
L'ensemble des nombres réels, quelle que soit la manière dont il est présenté, défini ou construit, n'est pas une multiplicité "amorphe", mais il vient avec une "structure" naturelle, héritée en dernière analyse de la structure arithmétique de l'ensemble des nombres...
Fractions rationnelles : entre fonctions et arithmétique
Les fractions rationnelles à une indéterminée apparaissent à la convergence de la théorie des fonctions rationnelles et de la théorie des polynômes. En généralisant la construction des nombres rationnels à partir des nombres entiers relatifs, on les construit comme...
Quantifier l’infini avec les nombres cardinaux
Quand il s'agit de compter ou de classer des ensembles, nous faisons appel à deux types de nombres : les ordinaux et les cardinaux. Alors que les nombres ordinaux nous aident à mettre en ordre une série d'éléments (premier, deuxième, troisième, etc.), les nombres...
Compter dans l’infini avec les nombres ordinaux
Les nombres entiers naturels ont deux visages : d'un côté, ils peuvent être vus comme des séquences ou des "énumérations" – ce qu'on appelle les nombres ordinaux. De l'autre, ils sont perçus comme des "quantités", ce qui nous mène aux nombres cardinaux. Bien que cette...
La construction axiomatique de l’arithmétique naturelle
L'arithmétique naturelle est la science des nombres entiers naturels : elle repose sur l'addition, la multiplication, l'ordre naturel et la divisibilité. Or, toutes ces opérations et relations se définissent à partir de la seule fonction successeur, dont les...
Le paradoxe de Russell et la théorie des classes
Le paradoxe ou antinomie de Russell est un paradoxe très simple de la théorie naïve des ensembles, qui surgit lorsqu'on cherche à définir un "ensemble de tous les ensembles". Sa résolution repose sur l'introduction de la notion de classe et la distinction des...
Le théorème d’Euclide : une infinité de nombres premiers
Les nombres entiers naturels premiers sont sont ceux qui n'ont pas d'autres diviseurs que 1 et eux-mêmes. Ils existent en nombre infini par le théorème d'Euclide, qui n'est pas difficile à démontrer. 1.Les nombres premiers Diviseurs et nombres premiers Un nombre...
Qu’est-ce qu’un nombre rationnel ? Des quotients dans un quotient
1.L'intuition des nombres rationnels Les nombres rationnels, c'est-à-dire "fractionnaires", comme \(-\frac 1 2, \frac{27}{4}, \frac{312}{-6783},\ldots\), forment un ensemble intuitif qu'on note \(\mathbb Q\). C'est une extension de l'ensemble \(\mathbb Z\) des nombres...
Qu’est-ce qu’un nombre entier relatif ? Une représentation astucieuse
Les nombres entiers relatifs sont une extension des nombres entiers naturels où l'existence d'une soustraction fournit un cadre mieux approprié à certaines questions d'arithmétique. On peut les décrire de manière axiomatique, mais aussi les construire à partir de...
Le fini et l’infini mathématique : comparer et dénombrer
Un ensemble fini, c'est un ensemble qu'on peut dénombrer à l'aide des entiers naturels \(1,\ldots,n\) pour un certain entier naturel \(n\). Mais qu'est-ce que dénombrer ? Et qu'est-ce qu'un ensemble infini ? L'infini mathématique se définit naturellement et de manière...
Qu’est-ce qu’un ensemble ? Fonder la mathématique dans l’intuition
La théorie naïve des ensembles ou "science des patates" est le fondement naturel (et compréhensible !) de la science mathématique Introduction : les concepts primitifs "Je sais ce qu'est le temps. Si tu me le demandes, je ne le sais plus." Saint-Augustin Cette...
Qu’est-ce que les nombres entiers naturels ? Définir ou axiomatiser
La science mathématique ne cherche pas à définir les nombres entiers naturels, mais à comprendre l'ensemble qu'ils forment. "Dieu a fait le nombre entier, le reste est l'oeuvre des hommes." Leopold Kronecker 1. On ne définit pas les nombres entiers naturels ! Mais on...
Qu’est-ce qu’un nombre réel ? La formidable construction de Cauchy
Les nombres réels sont toutes les "grandeurs" qu'on peut ordonner, et on peut les "construire" de diverses manières grâce à la théorie des ensembles "Les nombres gouvernent le monde." Pythagore Introduction : les grandeurs irrationnelles Les nombres réels idéalisent...