la Règle et le Compas
Blog Mathématique
Une approche conceptuelle
de la science mathématique
Articles Récents
Histoire de l’infini I : La philosophie grecque
Nous proposons une revue de l'histoire du concept d'infini dans la tradition occidentale qui précède Cantor, son inventeur mathématique dans la théorie des ensembles, à partir de l'Histoire de l'infini de Jonas Cohn. La formation et la généalogie de ce concept sont...
Isométries vectorielles du plan euclidien
Fonctions continues et théorème des valeurs intermédiaires
Les fonctions continues à valeurs réelles forment le concept fondamental de l'analyse réelle et de la topologie. Or, si la notion de continuité est transparente sur le plan de l'intuition, sa formulation mathématique nécessite une traduction, par exemple à travers la...
Algèbre Linéaire : la Surprenante Arithmétisation de l’Espace
Fonder l’arithmétique dans la théorie des ensembles
Nous explorons la fondation de l'arithmétique naturelle en partant des axiomes de Peano au sein de la théorie des ensembles, révélant une approche innovante pour conceptualiser les nombres entiers naturels. Nous questionnons l'usage traditionnel des ordinaux et...
Analycité des fonctions holomorphes : indice et formules de Cauchy
Introduction : fonctions holomorphes et analytiques En introduisant les fonctions holomorphes d'une variable complexe, c'est-à-dire dérivables au sens complexe, nous avons mis en lumière un exemple fondamental : celui des fonctions analytiques complexes, développables...
Principes et propriétés des fonctions holomorphes d’une variable complexe
Les principes fondamentaux des fonctions holomorphes d'une variable complexe exploitent la dérivabilité et les caractéristiques uniques qui définissent ces fonctions dans le plan complexe. Nous abordons la définition des sous-ensembles ouverts de $\mathbb{C},$ les...
Convergence et limites des fonctions d’une variable réelle
La notion de limite d'une fonction est la base de l'analyse réelle, c'est-à-dire de la théorie des fonctions à valeurs dans l'ensemble $\mathbb R$ : elle permet entre autres de définir les notions de continuité et de dérivation des fonctions d'une variable réelle, et...
Courbes différentiables dans les espaces réels
Dans la géométrie différentielle, l'analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d'en étudier avec précision certains paramètres standard. Nous commençons avec l'étude des...
Connexion
Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.
Explorer par Catégories
Algèbre
La théorie mathématique des opérations et des structures
Analyse
La théorie mathématique des processus infinitésimaux
Cinématique
La théorie mathématique du mouvement
Ensembles
La théorie fondamentale des multiplicités mathématiques
Fonctions
La théorie mathématique des relations entre variables
Géométrie
La théorie mathématique des formes et des transformations
Logique
Le traitement mathématique de la logique naturelle
Nombres
La théorie mathématique des nombres et leurs propriétés
Trigonométrie
La théorie mathématique des angles et longueurs
Recherche
Tous les Articles