Mathesis
  • Blog
  • About
  • English
    • Français
    • English
Select Page
Measuring plane vector angles : algebra meets analysis

Measuring plane vector angles : algebra meets analysis

by Jean Barbet | Feb 13, 2021 | Algebra, Geometry, Non classé

Introduction In Vector angles: geometric intuition and algebraic definition, we defined and described the group of Euclidean plane vector angles algebraically, using an equivalence relation on unit vectors. Just as we can measure lengths, we learn at primary school...
Vector angles: geometric intuition and algebraic definition

Vector angles: geometric intuition and algebraic definition

by Jean Barbet | Feb 6, 2021 | Algebra, Geometry, Non classé

Vector angles are the usual oriented angles of Euclidean plane geometry. Thanks to the resources of naive set theory, they can be defined purely algebraically using an equivalence relation and the vectorial rotations of the plane. The operation of composing rotations...
The circular exponential and trigonometric functions

The circular exponential and trigonometric functions

by Jean Barbet | Jan 9, 2021 | Analysis, Functions, Non classé

From the complex exponential function, we can define a “circular exponential” function, which “wraps” the real line around the trigonometric circle, and makes it possible to rigorously define the cosine and sine trigonometric functions, which...
Analytic functions and the complex exponential

Analytic functions and the complex exponential

by Jean Barbet | Dec 29, 2020 | Analysis, Functions, Non classé

Some functions that can be differentiated indefinitely can be described ‘around each point’ as the sum of an power series. These are analytic functions, real or complex, the typical example being the exponential function, which can be extended to the whole complex...
An infinity of prime numbers : Euclid’s theorem

An infinity of prime numbers : Euclid’s theorem

by Jean Barbet | Dec 16, 2020 | Non classé, Number Theory, Set Theory

The prime natural numbers are those which have no divisors other than 1 and themselves. They exist in infinite number by Euclid’s theorem, which is not difficult to prove. 1.Prime numbers 1.1.Divisors and primes A prime number is a non-zero natural number (see...
What is a rational number? Quotients of numbers and sets

What is a rational number? Quotients of numbers and sets

by Jean Barbet | Nov 20, 2020 | Non classé, Number Theory, Set Theory

1.The intuition of rational numbers Rational numbers, i.e. “fractional” numbers, such as \(-\frac 1 2, \frac{27}{4}, \frac{312}{-6783},\ldots\), form an intuitive set which we note \(\mathbb Q\). It is an extension of the set \(\mathbb Z\) of integers (see...
« Older Entries
Next Entries »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Forgot Password

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Recent publications

  • The Axiom of Infinity: Founding Arithmetic in Set Theory
  • The higher axioms of natural set theory
  • Natural Set Theory: An Ultimate Foundation for Mathematics
  • Counting in the Infinite with Ordinal Numbers
  • The axiomatic construction of natural arithmetic

© MATHESIS – 2020