Mathesis
  • Blog
  • About
  • English
    • Français
    • English
Select Page
Hamilton’s Quaternions Algebra: A Geometric and Algebraic Space-Time

Hamilton’s Quaternions Algebra: A Geometric and Algebraic Space-Time

by Jean Barbet | Mar 20, 2021 | Algebra, Geometry, Non classé, Number Theory

The complex multiplication naturally extends to a multiplication in four dimensions, which defines on the space $ \mathbb{R}^4 $ the structure of the algebra $ \mathbb{H} $ of Hamilton’s quaternions. This multiplication can be interpreted geometrically using the...
Gaussian integers: an imaginary arithmetic

Gaussian integers: an imaginary arithmetic

by Jean Barbet | Mar 12, 2021 | Algebra, Non classé, Number Theory

Gaussian integers are complex numbers with integer coordinates. Thanks to their norm, a kind of integer measure of their size, we can describe some of their arithmetic properties. In particular, we can determine which are the usual prime numbers that...
An analytic definition of the number π using the cosine

An analytic definition of the number π using the cosine

by Jean Barbet | Feb 20, 2021 | Functions, Number Theory

Introduction When we introduced the circular exponential, the trigonometric functions cosine and sine were defined as its real part and imaginary part. From this, we derived the analytical expressions: \(\cos x=\sum_{n=0}^{+\infty} (-1)^n\dfrac{x^{2n}}{(2n)!}\) and...
Measuring plane vector angles : algebra meets analysis

Measuring plane vector angles : algebra meets analysis

by Jean Barbet | Feb 13, 2021 | Algebra, Geometry, Non classé

Introduction In Vector angles: geometric intuition and algebraic definition, we defined and described the group of Euclidean plane vector angles algebraically, using an equivalence relation on unit vectors. Just as we can measure lengths, we learn at primary school...
Vector angles: geometric intuition and algebraic definition

Vector angles: geometric intuition and algebraic definition

by Jean Barbet | Feb 6, 2021 | Algebra, Geometry, Non classé

Vector angles are the usual oriented angles of Euclidean plane geometry. Thanks to the resources of naive set theory, they can be defined purely algebraically using an equivalence relation and the vectorial rotations of the plane. The operation of composing rotations...
« Older Entries
Next Entries »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Forgot Password

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • MATHESIS – A propos R&C
  • Inscription

Recent publications

  • The Axiom of Infinity: Founding Arithmetic in Set Theory
  • The higher axioms of natural set theory
  • Natural Set Theory: An Ultimate Foundation for Mathematics
  • Counting in the Infinite with Ordinal Numbers
  • The axiomatic construction of natural arithmetic

Informations Légales

Mentions Légales

Conditions Générales d’Utilisation

Conditions Générales de Vente

Politique de Confidentialité

Explorer MATHESIS

Espace :: La Règle et le Compas

Encyclopédie MATHESIS

Ecole Virtuelle de Mathématique

Livres MATHESIS

Contact : contact@mathesis-online.com

YouTube @ Mathesis – l’Univers Mathématique

© MATHESIS – 2020