la Règle et le Compas
Blog Mathématique
Analyse
Fonctions continues et théorème des valeurs intermédiaires
Les fonctions continues à valeurs réelles forment le concept fondamental de l'analyse réelle et de la topologie. Or, si la notion de continuité est transparente sur le plan de l'intuition, sa formulation mathématique nécessite une traduction, par exemple à travers la...
Analycité des fonctions holomorphes : indice et formules de Cauchy
Introduction : fonctions holomorphes et analytiques En introduisant les fonctions holomorphes d'une variable complexe, c'est-à-dire dérivables au sens complexe, nous avons mis en lumière un exemple fondamental : celui des fonctions analytiques complexes, développables...
Principes et propriétés des fonctions holomorphes d’une variable complexe
Les principes fondamentaux des fonctions holomorphes d'une variable complexe exploitent la dérivabilité et les caractéristiques uniques qui définissent ces fonctions dans le plan complexe. Nous abordons la définition des sous-ensembles ouverts de $\mathbb{C},$ les...
Convergence et limites des fonctions d’une variable réelle
La notion de limite d'une fonction est la base de l'analyse réelle, c'est-à-dire de la théorie des fonctions à valeurs dans l'ensemble $\mathbb R$ : elle permet entre autres de définir les notions de continuité et de dérivation des fonctions d'une variable réelle, et...
Courbes différentiables dans les espaces réels
Dans la géométrie différentielle, l'analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d'en étudier avec précision certains paramètres standard. Nous commençons avec l'étude des...
Fonctions monotones d’une variable réelle
Nous revenons dans cet article sur les fonctions monotones d'une variable réelle. Les propriétés de l'analyse des fonctions d'une variable réelle sont celles qui sont associées à la structure de la droite réelle. L'ordre entre nombres réels, représentation de l'ordre...
Structure et topologie de la droite réelle
L'ensemble des nombres réels, quelle que soit la manière dont il est présenté, défini ou construit, n'est pas une multiplicité "amorphe", mais il vient avec une "structure" naturelle, héritée en dernière analyse de la structure arithmétique de l'ensemble des nombres...
L’intégrale selon Riemann : fonctions continues sur un segment
Quelle est l'opération inverse de la dérivée d'une fonction ? Une première réponse à cette question consiste à intégrer une fonction qu'on veut pouvoir considérer comme dérivée, afin d'en construire une primitive. Cette problématique conduit naturellement à...
L’exponentielle circulaire et les fonctions trigonométriques
A partir de la fonction exponentielle complexe, on peut définir une fonction "exponentielle circulaire", qui "enroule" la droite réelle sur le cercle trigonométrique, et permet de définir rigoureusement les fonctions trigonométriques cosinus et sinus, qui s'étendent à...
Fonctions analytiques et exponentielle complexe
Certaines fonctions indéfiniment dérivables peuvent être décrites "autour de chaque point" comme la somme d'une série dite "entière". Il s'agit des fonctions analytiques, réelles ou complexes, dont l'exemple typique est celui de la fonction exponentielle, qu'on peut...
Dériver une bijection inverse & l’exemple de la fonction exponentielle
Les relations entre les propriétés de monotonie, continuité et dérivation d'une fonction d'une variable réelle, permettent de calculer formellement la dérivée d'une bijection inverse d'une fonction injective et dérivable. L'exemple le plus représentatif est peut-être...
Qu’est-ce qu’un nombre réel ? La formidable construction de Cauchy
Les nombres réels sont toutes les "grandeurs" qu'on peut ordonner, et on peut les "construire" de diverses manières grâce à la théorie des ensembles "Les nombres gouvernent le monde." Pythagore Introduction : les grandeurs irrationnelles Les nombres réels idéalisent...