Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Les quaternions de Hamilton : un espace-temps algébrique

Les quaternions de Hamilton : un espace-temps algébrique

par Jean Barbet | Mar 19, 2021 | Algèbre, Géométrie, Nombres

La multiplication complexe se prolonge naturellement à une multiplication en quatre dimensions, qui définit sur l’espace \(\mathbb R^4\) la structure de l’algèbre \(\mathbb H\) des quaternions de Hamilton. Cette multiplication s’interprète...
Les entiers de Gauss : une arithmétique imaginaire

Les entiers de Gauss : une arithmétique imaginaire

par Jean Barbet | Mar 11, 2021 | Algèbre, Nombres

Les entiers de Gauss sont les nombres complexes à coordonnées entières. Grâce à leur norme, sorte de mesure entière de leur taille, on peut décrire certaines de leurs propriétés arithmétiques. En particulier, on peut effectuer des divisions euclidiennes et déterminer...
Une définition analytique du nombre π par le cosinus

Une définition analytique du nombre π par le cosinus

par Jean Barbet | Fév 19, 2021 | Fonctions, Nombres

Introduction Lorsque nous avons introduit l’exponentielle circulaire, les fonctions trigonométriques cosinus et sinus ont été définies comme sa partie réelle et sa partie imaginaire. Nous en avons alors tiré les expressions analytiques : \(\cos...
La mesure des angles de vecteurs : algèbre et analyse

La mesure des angles de vecteurs : algèbre et analyse

par Jean Barbet | Fév 12, 2021 | Algèbre, Géométrie

Introduction Dans Angles de vecteurs : intuition géométrique et définition algébrique, nous avons défini et décrit le groupe des angles de vecteurs du plan euclidien de manière algébrique, en utilisant une relation d’équivalence sur les vecteurs unitaires....
Angles de vecteurs : intuition géométrique et définition algébrique

Angles de vecteurs : intuition géométrique et définition algébrique

par Jean Barbet | Fév 5, 2021 | Algèbre, Géométrie

Les angles de vecteurs sont les angles orientés habituels de la géométrie euclidienne plane. Grâce aux ressources de la théorie naïve des ensembles, on les définit de manière purement algébrique grâce à une relation d’équivalence et aux rotations vectorielles du...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos R&C
  • Inscription

Articles récents

  • Théorie mathématique de la musique : II.Gammes, tonalité et harmonie
  • Séries numériques et fonction zeta de Riemann
  • Théorie mathématique de la musique : I.Mélodie, consonance et chromatisme
  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

Informations Légales

Mentions Légales

Conditions Générales d’Utilisation

Conditions Générales de Vente

Politique de Confidentialité

Explorer MATHESIS

Espace :: La Règle et le Compas

Encyclopédie MATHESIS

Ecole Virtuelle de Mathématique

Livres MATHESIS

Contact : contact@mathesis-online.com

YouTube @ Mathesis – l’Univers Mathématique

© MATHESIS – 2020