Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Structure et topologie de la droite réelle

Structure et topologie de la droite réelle

par Jean Barbet | Avr 30, 2024 | Analyse, Ensembles, Nombres

L’ensemble des nombres réels, quelle que soit la manière dont il est présenté, défini ou construit, n’est pas une multiplicité « amorphe », mais il vient avec une « structure » naturelle, héritée en dernière analyse de la structure arithmétique de...
L’intégrale selon Riemann : fonctions continues sur un segment

L’intégrale selon Riemann : fonctions continues sur un segment

par Jean Barbet | Avr 11, 2024 | Analyse, Fonctions

Quelle est l’opération inverse de la dérivée d’une fonction ? Une première réponse à cette question consiste à intégrer une fonction qu’on veut pouvoir considérer comme dérivée, afin d’en construire une primitive. Cette problématique conduit...
L’exponentielle circulaire et les fonctions trigonométriques

L’exponentielle circulaire et les fonctions trigonométriques

par Jean Barbet | Jan 8, 2021 | Analyse, Fonctions

A partir de la fonction exponentielle complexe, on peut définir une fonction « exponentielle circulaire », qui « enroule » la droite réelle sur le cercle trigonométrique, et permet de définir rigoureusement les fonctions trigonométriques cosinus et sinus, qui...
Fonctions analytiques et exponentielle complexe

Fonctions analytiques et exponentielle complexe

par Jean Barbet | Déc 28, 2020 | Analyse, Fonctions

Certaines fonctions indéfiniment dérivables peuvent être décrites « autour de chaque point » comme la somme d’une série dite « entière ». Il s’agit des fonctions analytiques, réelles ou complexes, dont l’exemple typique est celui de la fonction...
Dériver une bijection inverse & l’exemple de la fonction exponentielle

Dériver une bijection inverse & l’exemple de la fonction exponentielle

par Jean Barbet | Déc 5, 2020 | Analyse, Fonctions

Les relations entre les propriétés de monotonie, continuité et dérivation d’une fonction d’une variable réelle, permettent de calculer formellement la dérivée d’une bijection inverse d’une fonction injective et dérivable. L’exemple le...
Qu’est-ce qu’un nombre réel ? La formidable construction  de Cauchy

Qu’est-ce qu’un nombre réel ? La formidable construction de Cauchy

par Jean Barbet | Juin 19, 2020 | Analyse, Ensembles, Nombres

Les nombres réels sont toutes les « grandeurs » qu’on peut ordonner, et on peut les « construire » de diverses manières grâce à la théorie des ensembles « Les nombres gouvernent le monde. » Pythagore Introduction : les grandeurs irrationnelles Les nombres réels...
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien
  • Histoire de l’infini I : La philosophie grecque antique

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020