par Jean Barbet | Avr 30, 2024 | Analyse, Ensembles, Nombres
L’ensemble des nombres réels, quelle que soit la manière dont il est présenté, défini ou construit, n’est pas une multiplicité « amorphe », mais il vient avec une « structure » naturelle, héritée en dernière analyse de la structure arithmétique de...
par Jean Barbet | Avr 11, 2024 | Analyse, Fonctions
Quelle est l’opération inverse de la dérivée d’une fonction ? Une première réponse à cette question consiste à intégrer une fonction qu’on veut pouvoir considérer comme dérivée, afin d’en construire une primitive. Cette problématique conduit...
par Jean Barbet | Jan 8, 2021 | Analyse, Fonctions
A partir de la fonction exponentielle complexe, on peut définir une fonction « exponentielle circulaire », qui « enroule » la droite réelle sur le cercle trigonométrique, et permet de définir rigoureusement les fonctions trigonométriques cosinus et sinus, qui...
par Jean Barbet | Déc 28, 2020 | Analyse, Fonctions
Certaines fonctions indéfiniment dérivables peuvent être décrites « autour de chaque point » comme la somme d’une série dite « entière ». Il s’agit des fonctions analytiques, réelles ou complexes, dont l’exemple typique est celui de la fonction...
par Jean Barbet | Déc 5, 2020 | Analyse, Fonctions
Les relations entre les propriétés de monotonie, continuité et dérivation d’une fonction d’une variable réelle, permettent de calculer formellement la dérivée d’une bijection inverse d’une fonction injective et dérivable. L’exemple le...
par Jean Barbet | Juin 19, 2020 | Analyse, Ensembles, Nombres
Les nombres réels sont toutes les « grandeurs » qu’on peut ordonner, et on peut les « construire » de diverses manières grâce à la théorie des ensembles « Les nombres gouvernent le monde. » Pythagore Introduction : les grandeurs irrationnelles Les nombres réels...