Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
L’espace euclidien : points, vecteurs et produit scalaire

L’espace euclidien : points, vecteurs et produit scalaire

par Jean Barbet | Mar 24, 2021 | Algèbre, Géométrie, Nombres

La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l’espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
Les quaternions de Hamilton : un espace-temps algébrique

Les quaternions de Hamilton : un espace-temps algébrique

par Jean Barbet | Mar 19, 2021 | Algèbre, Géométrie, Nombres

La multiplication complexe se prolonge naturellement à une multiplication en quatre dimensions, qui définit sur l’espace \(\mathbb R^4\) la structure de l’algèbre \(\mathbb H\) des quaternions de Hamilton. Cette multiplication s’interprète...
Les entiers de Gauss : une arithmétique imaginaire

Les entiers de Gauss : une arithmétique imaginaire

par Jean Barbet | Mar 11, 2021 | Algèbre, Nombres

Les entiers de Gauss sont les nombres complexes à coordonnées entières. Grâce à leur norme, sorte de mesure entière de leur taille, on peut décrire certaines de leurs propriétés arithmétiques. En particulier, on peut effectuer des divisions euclidiennes et déterminer...
Une définition analytique du nombre π par le cosinus

Une définition analytique du nombre π par le cosinus

par Jean Barbet | Fév 19, 2021 | Fonctions, Nombres

Introduction Lorsque nous avons introduit l’exponentielle circulaire, les fonctions trigonométriques cosinus et sinus ont été définies comme sa partie réelle et sa partie imaginaire. Nous en avons alors tiré les expressions analytiques : \(\cos...
Le théorème d’Euclide : une infinité de nombres premiers

Le théorème d’Euclide : une infinité de nombres premiers

par Jean Barbet | Déc 15, 2020 | Ensembles, Nombres

Les nombres entiers naturels premiers sont sont ceux qui n’ont pas d’autres diviseurs que 1 et eux-mêmes. Ils existent en nombre infini par le théorème d’Euclide, qui n’est pas difficile à démontrer. 1.Les nombres premiers Diviseurs et nombres...
Qu’est-ce qu’un nombre rationnel ? Des quotients dans un quotient

Qu’est-ce qu’un nombre rationnel ? Des quotients dans un quotient

par Jean Barbet | Nov 19, 2020 | Ensembles, Nombres

1.L’intuition des nombres rationnels Les nombres rationnels, c’est-à-dire « fractionnaires », comme \(-\frac 1 2, \frac{27}{4}, \frac{312}{-6783},\ldots\), forment un ensemble intuitif qu’on note \(\mathbb Q\). C’est une extension de...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien
  • Histoire de l’infini I : La philosophie grecque antique

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020