par Jean Barbet | Nov 19, 2020 | Ensembles, Nombres
1.L’intuition des nombres rationnels Les nombres rationnels, c’est-à-dire « fractionnaires », comme \(-\frac 1 2, \frac{27}{4}, \frac{312}{-6783},\ldots\), forment un ensemble intuitif qu’on note \(\mathbb Q\). C’est une extension de...
par Jean Barbet | Nov 9, 2020 | Ensembles, Nombres
Les nombres entiers relatifs sont une extension des nombres entiers naturels où l’existence d’une soustraction fournit un cadre mieux approprié à certaines questions d’arithmétique. On peut les décrire de manière axiomatique, mais aussi les...
par Jean Barbet | Août 19, 2020 | Nombres
Il existe diverses manières de définir les nombres complexes. La plus directe consiste à les regarder comme les points ou les vecteurs du plan. L’addition et la multiplication se définissent alors grâce aux coordonnées. 1. L’ensemble \(\mathbb C\) des...
par Jean Barbet | Juin 21, 2020 | Ensembles, Logique, Nombres
La science mathématique ne cherche pas à définir les nombres entiers naturels, mais à comprendre l’ensemble qu’ils forment. « Dieu a fait le nombre entier, le reste est l’oeuvre des hommes. » Leopold Kronecker 1. On ne définit pas les nombres entiers...
par Jean Barbet | Juin 19, 2020 | Analyse, Ensembles, Nombres
Les nombres réels sont toutes les « grandeurs » qu’on peut ordonner, et on peut les « construire » de diverses manières grâce à la théorie des ensembles « Les nombres gouvernent le monde. » Pythagore Introduction : les grandeurs irrationnelles Les nombres réels...