Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Rotations vectorielles du plan : l’approche « analytique »

Rotations vectorielles du plan : l’approche « analytique »

par Jean Barbet | Jan 25, 2021 | Algèbre, Géométrie

Les rotations vectorielles du plan (c’est-à-dire centrées en l’origine), se dérivent de manière analytique (par coordonnées) comme applications linéaires inversibles de déterminant \(1\), ce qui permet de les caractériser intégralement et de les identifier...
L’exponentielle circulaire et les fonctions trigonométriques

L’exponentielle circulaire et les fonctions trigonométriques

par Jean Barbet | Jan 8, 2021 | Analyse, Fonctions

A partir de la fonction exponentielle complexe, on peut définir une fonction « exponentielle circulaire », qui « enroule » la droite réelle sur le cercle trigonométrique, et permet de définir rigoureusement les fonctions trigonométriques cosinus et sinus, qui...
Fonctions analytiques et exponentielle complexe

Fonctions analytiques et exponentielle complexe

par Jean Barbet | Déc 28, 2020 | Analyse, Fonctions

Certaines fonctions indéfiniment dérivables peuvent être décrites « autour de chaque point » comme la somme d’une série dite « entière ». Il s’agit des fonctions analytiques, réelles ou complexes, dont l’exemple typique est celui de la fonction...
Le théorème d’Euclide : une infinité de nombres premiers

Le théorème d’Euclide : une infinité de nombres premiers

par Jean Barbet | Déc 15, 2020 | Ensembles, Nombres

Les nombres entiers naturels premiers sont sont ceux qui n’ont pas d’autres diviseurs que 1 et eux-mêmes. Ils existent en nombre infini par le théorème d’Euclide, qui n’est pas difficile à démontrer. 1.Les nombres premiers Diviseurs et nombres...
Dériver une bijection inverse & l’exemple de la fonction exponentielle

Dériver une bijection inverse & l’exemple de la fonction exponentielle

par Jean Barbet | Déc 5, 2020 | Analyse, Fonctions

Les relations entre les propriétés de monotonie, continuité et dérivation d’une fonction d’une variable réelle, permettent de calculer formellement la dérivée d’une bijection inverse d’une fonction injective et dérivable. L’exemple le...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos R&C
  • Inscription

Articles récents

  • Théorie mathématique de la musique : II.Gammes, tonalité et harmonie
  • Séries numériques et fonction zeta de Riemann
  • Théorie mathématique de la musique : I.Mélodie, consonance et chromatisme
  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

Informations Légales

Mentions Légales

Conditions Générales d’Utilisation

Conditions Générales de Vente

Politique de Confidentialité

Explorer MATHESIS

Espace :: La Règle et le Compas

Encyclopédie MATHESIS

Ecole Virtuelle de Mathématique

Livres MATHESIS

Contact : contact@mathesis-online.com

YouTube @ Mathesis – l’Univers Mathématique

© MATHESIS – 2020