Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Isométries vectorielles du plan euclidien

Isométries vectorielles du plan euclidien

par Jean Barbet | Avr 4, 2025 | Algèbre, Géométrie, Trigonométrie

Les isométries vectorielles du plan sont les transformations linéaires qui préservent les distances, ou encore le produit scalaire, c’est-à-dire l’orthogonalité. Elles se caractérisent comme transformations linéaires qui préservent les bases orthonormées,...
L’interprétation géométrique du déterminant dans le plan

L’interprétation géométrique du déterminant dans le plan

par Jean Barbet | Nov 29, 2023 | Algèbre, Géométrie, Trigonométrie

Le produit scalaire et le déterminant sont des concepts clés de l’algèbre linéaire dans le plan euclidien, offrant une compréhension profonde des relations entre deux vecteurs $u$ et $v$. Lorsque ces vecteurs sont unitaires, leur produit scalaire et déterminant...
Loi des sinus, aire du triangle et formule de Héron

Loi des sinus, aire du triangle et formule de Héron

par Jean Barbet | Août 6, 2023 | Géométrie, Trigonométrie

Introduction Dans Produit scalaire et loi des cosinus, nous avons montré à partir des angles orientés comment l’interprétation trigonométrique du produit scalaire de deux vecteurs conduisait à une généralisation du théorème de Pythagore, la « loi des cosinus »...
Définir l’aire du triangle et du parallélogramme

Définir l’aire du triangle et du parallélogramme

par Jean Barbet | Mar 15, 2023 | Géométrie, Trigonométrie

Dans la géométrie intuitive on définit les aires des figures sans justification ou sans démonstration. Dans la géométrie euclidienne moderne, c’est-à-dire analytique, la définition de l’aire du triangle et du parallélogramme se fondent sur des définitions...
Loi des cosinus et produit scalaire de deux vecteurs

Loi des cosinus et produit scalaire de deux vecteurs

par Jean Barbet | Nov 22, 2022 | Géométrie, Trigonométrie

On rencontre souvent en géométrie et en physique une expression trigonométrique du produit scalaire. A partir d’une définition du cosinus et du sinus d’un angle affine, on peut la démontrer directement grâce aux propriétés élémentaires du produit scalaire....
Le cercle trigonométrique : où Pythagore rencontre Thalès

Le cercle trigonométrique : où Pythagore rencontre Thalès

par Jean Barbet | Oct 24, 2020 | Trigonométrie

Le cercle trigonométrique permet de définir le cosinus, le sinus et la tangente d’un angle orienté, et d’en donner une interprétation à travers les théorèmes de Thalès et de Pythagore. Introduction : trigonométrie et fonctions La trigonométrie est...

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • Les fondements mathématiques de la musique : I.Mélodie, consonance et chromatisme
  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

Informations Légales

Mentions Légales

Conditions Générales d’Utilisation

Conditions Générales de Vente

Politique de Confidentialité

Explorer MATHESIS

Espace :: La Règle et le Compas

Encyclopédie MATHESIS

Ecole Virtuelle de Mathématique

Livres MATHESIS

Contact : contact@mathesis-online.com

YouTube @ Mathesis – l’Univers Mathématique

© MATHESIS – 2020