Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Rotations vectorielles du plan : l’approche « analytique »

Rotations vectorielles du plan : l’approche « analytique »

par Jean Barbet | Jan 25, 2021 | Algèbre, Géométrie

Les rotations vectorielles du plan (c’est-à-dire centrées en l’origine), se dérivent de manière analytique (par coordonnées) comme applications linéaires inversibles de déterminant \(1\), ce qui permet de les caractériser intégralement et de les identifier...
Le produit scalaire naturel : une combinaison numérique de vecteurs

Le produit scalaire naturel : une combinaison numérique de vecteurs

par Jean Barbet | Oct 3, 2020 | Algèbre, Géométrie

Le produit scalaire de deux vecteurs dans un espace réel est un nombre réel qui tient compte de la direction, du sens et de l’amplitude des deux vecteurs. 1.Le produit scalaire naturel dans le plan euclidien 1.1.De la distance entre deux points au produit...
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • Les fondements mathématiques de la musique : I.Mélodie, consonance et chromatisme
  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020