par Jean Barbet | Mai 28, 2021 | Ensembles
Le paradoxe ou antinomie de Russell est un paradoxe très simple de la théorie naïve des ensembles, qui surgit lorsqu’on cherche à définir un « ensemble de tous les ensembles ». Sa résolution repose sur l’introduction de la notion de classe et la...
par Jean Barbet | Mai 22, 2021 | Algèbre, Géométrie
Les transformations linéaires du plan euclidien sont les applications linéaires inversibles, c’est-à-dire de déterminant non nul. Elles permettent de passer d’une base du plan à une autre, et les transformations orthogonales, c’est-à-dire les...
par Jean Barbet | Mai 7, 2021 | Algèbre, Géométrie
La représentation du plan euclidien par le produit cartésien \(\mathbb R^2\) permet de décomposer tout vecteur du plan en deux coordonnées, son abscisse et son ordonnée. Cette décomposition est liée à un « système de représentation » particulier et naturel,...
par Jean Barbet | Mar 24, 2021 | Algèbre, Géométrie, Nombres
La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l’espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
par Jean Barbet | Mar 19, 2021 | Algèbre, Géométrie, Nombres
La multiplication complexe se prolonge naturellement à une multiplication en quatre dimensions, qui définit sur l’espace \(\mathbb R^4\) la structure de l’algèbre \(\mathbb H\) des quaternions de Hamilton. Cette multiplication s’interprète...