Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Les bases du plan euclidien : vecteurs et coordonnées

Les bases du plan euclidien : vecteurs et coordonnées

par Jean Barbet | Mai 7, 2021 | Algèbre, Géométrie

La représentation du plan euclidien par le produit cartésien \(\mathbb R^2\) permet de décomposer tout vecteur du plan en deux coordonnées, son abscisse et son ordonnée. Cette décomposition est liée à un « système de représentation » particulier et naturel,...
L’espace euclidien : points, vecteurs et produit scalaire

L’espace euclidien : points, vecteurs et produit scalaire

par Jean Barbet | Mar 24, 2021 | Algèbre, Géométrie, Nombres

La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l’espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
Les quaternions de Hamilton : un espace-temps algébrique

Les quaternions de Hamilton : un espace-temps algébrique

par Jean Barbet | Mar 19, 2021 | Algèbre, Géométrie, Nombres

La multiplication complexe se prolonge naturellement à une multiplication en quatre dimensions, qui définit sur l’espace \(\mathbb R^4\) la structure de l’algèbre \(\mathbb H\) des quaternions de Hamilton. Cette multiplication s’interprète...
Les entiers de Gauss : une arithmétique imaginaire

Les entiers de Gauss : une arithmétique imaginaire

par Jean Barbet | Mar 11, 2021 | Algèbre, Nombres

Les entiers de Gauss sont les nombres complexes à coordonnées entières. Grâce à leur norme, sorte de mesure entière de leur taille, on peut décrire certaines de leurs propriétés arithmétiques. En particulier, on peut effectuer des divisions euclidiennes et déterminer...
Une définition analytique du nombre π par le cosinus

Une définition analytique du nombre π par le cosinus

par Jean Barbet | Fév 19, 2021 | Fonctions, Nombres

Introduction Lorsque nous avons introduit l’exponentielle circulaire, les fonctions trigonométriques cosinus et sinus ont été définies comme sa partie réelle et sa partie imaginaire. Nous en avons alors tiré les expressions analytiques : \(\cos...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien
  • Histoire de l’infini I : La philosophie grecque antique

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020