Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Fonctions continues et théorème des valeurs intermédiaires

Fonctions continues et théorème des valeurs intermédiaires

par Jean Barbet | Mar 11, 2025 | Analyse, Ensembles, Fonctions, Nombres

Les fonctions continues à valeurs réelles forment le concept fondamental de l’analyse réelle et de la topologie. Or, si la notion de continuité est transparente sur le plan de l’intuition, sa formulation mathématique nécessite une traduction, par exemple à...
Algèbre Linéaire : la Surprenante Arithmétisation de l’Espace

Algèbre Linéaire : la Surprenante Arithmétisation de l’Espace

par Jean Barbet | Fév 6, 2025 | Algèbre, Géométrie, Nombres

L’algèbre linéaire transforme notre compréhension de l’espace grâce à une approche mathématique qui étend les concepts des espaces euclidiens à des structures plus abstraites comme les espaces vectoriels. Cet article explore comment des concepts simples...
Fonder l’arithmétique dans la théorie des ensembles

Fonder l’arithmétique dans la théorie des ensembles

par Jean Barbet | Déc 2, 2024 | Ensembles, Logique, Nombres

Nous explorons la fondation de l’arithmétique naturelle en partant des axiomes de Peano au sein de la théorie des ensembles, révélant une approche innovante pour conceptualiser les nombres entiers naturels. Nous questionnons l’usage traditionnel des...
Analycité des fonctions holomorphes : indice et formules de Cauchy

Analycité des fonctions holomorphes : indice et formules de Cauchy

par Jean Barbet | Nov 19, 2024 | Algèbre, Analyse, Fonctions, Géométrie

Introduction : fonctions holomorphes et analytiques En introduisant les fonctions holomorphes d’une variable complexe, c’est-à-dire dérivables au sens complexe, nous avons mis en lumière un exemple fondamental : celui des fonctions analytiques complexes,...
Principes et propriétés des fonctions holomorphes d’une variable complexe

Principes et propriétés des fonctions holomorphes d’une variable complexe

par Jean Barbet | Oct 7, 2024 | Algèbre, Analyse, Fonctions, Géométrie

Les principes fondamentaux des fonctions holomorphes d’une variable complexe exploitent la dérivabilité et les caractéristiques uniques qui définissent ces fonctions dans le plan complexe. Nous abordons la définition des sous-ensembles ouverts de $\mathbb{C},$...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien
  • Histoire de l’infini I : La philosophie grecque antique

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020