Mathesis
  • Accueil
  • Espace/Blog
  • Formation
  • Encyclopédie
  • Livres
  • A propos
    • La Règle et le Compas
    • Philosophie mathématique
    • A propos de l’auteur
  • Mon Compte
Sélectionner une page
Convergence et limites des fonctions d’une variable réelle

Convergence et limites des fonctions d’une variable réelle

par Jean Barbet | Août 30, 2024 | Analyse, Fonctions

La notion de limite d’une fonction est la base de l’analyse réelle, c’est-à-dire de la théorie des fonctions à valeurs dans l’ensemble $\mathbb R$ : elle permet entre autres de définir les notions de continuité et de dérivation des fonctions...
Courbes différentiables dans les espaces réels

Courbes différentiables dans les espaces réels

par Jean Barbet | Juin 29, 2024 | Analyse, Cinématique, Géométrie

Dans la géométrie différentielle, l’analyse réelle et la géométrie euclidienne convergent vers une description infinitésimale des objets géométriques naturels, qui permet d’en étudier avec précision certains paramètres standard. Nous commençons avec...
Fonctions monotones d’une variable réelle

Fonctions monotones d’une variable réelle

par Jean Barbet | Juin 18, 2024 | Analyse, Fonctions

Nous revenons dans cet article sur les fonctions monotones d’une variable réelle. Les propriétés de l’analyse des fonctions d’une variable réelle sont celles qui sont associées à la structure de la droite réelle. L’ordre entre nombres réels,...
Les axiomes supérieurs de la théorie naturelle des ensembles

Les axiomes supérieurs de la théorie naturelle des ensembles

par Jean Barbet | Juin 5, 2024 | Ensembles, Logique

En nous appuyant sur les notions d’objet et de classe issues de la logique naturelle, nous avons redéfini le concept d’ensemble de manière intuitive. Ainsi, nous avons établi une théorie naturelle des ensembles sans recourir à la logique formelle. Cette...
La théorie (naturelle) des ensembles : un fondement ultime pour les mathématiques

La théorie (naturelle) des ensembles : un fondement ultime pour les mathématiques

par Jean Barbet | Mai 5, 2024 | Ensembles, Logique

La révolution des mathématiques est celle de la théorie des ensembles, qui répond à la fois au problème d’un langage conceptuel universel et rigoureux, et à celui d’un fondement unique pour toutes les disciplines mathématiques. Si la théorie des ensembles...
« Entrées précédentes
Entrées suivantes »

Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.

 
 
Mot de passe oublié

Pages

  • MATHESIS::Essentiel
  • E-Books
  • Blog
  • A propos
  • Inscription

Articles récents

  • L’ontologie première au fondement de la mathématique
  • Applications et transformations affines du plan euclidien
  • Histoire de l’infini II : L’Antiquité et le Moyen Âge théologiques
  • Isométries vectorielles du plan euclidien
  • Histoire de l’infini I : La philosophie grecque antique

Catégories

  • Algèbre
  • Analyse
  • Cinématique
  • Ensembles
  • Fonctions
  • Géométrie
  • Logique
  • Nombres
  • Trigonométrie

© MATHESIS – 2020