la Règle et le Compas
Espace Mathématique
Une approche conceptuelle
de la science mathématique
Articles Récents
Les transformations linéaires du plan : déterminant, bases et inversion
Les transformations linéaires du plan euclidien sont les applications linéaires inversibles, c'est-à-dire de déterminant non nul. Elles permettent de passer d'une base du plan à une autre, et les transformations orthogonales, c'est-à-dire les isométries vectorielles,...
Les bases du plan euclidien : vecteurs et coordonnées
La représentation du plan euclidien par le produit cartésien \(\mathbb R^2\) permet de décomposer tout vecteur du plan en deux coordonnées, son abscisse et son ordonnée. Cette décomposition est liée à un "système de représentation" particulier et naturel, qu'on...
L’espace euclidien : points, vecteurs et produit scalaire
La méthode analytique de Descartes, qui permet de représenter le plan euclidien comme le produit cartésien \(\mathbb R^2\) grâce à la théorie des nombres réels, permet également de représenter l'espace euclidien comme le produit cartésien \(\mathbb R^3=\mathbb...
Les quaternions de Hamilton : un espace-temps algébrique
La multiplication complexe se prolonge naturellement à une multiplication en quatre dimensions, qui définit sur l'espace \(\mathbb R^4\) la structure de l'algèbre \(\mathbb H\) des quaternions de Hamilton. Cette multiplication s'interprète géométriquement à partir du...
Les entiers de Gauss : une arithmétique imaginaire
Les entiers de Gauss sont les nombres complexes à coordonnées entières. Grâce à leur norme, sorte de mesure entière de leur taille, on peut décrire certaines de leurs propriétés arithmétiques. En particulier, on peut effectuer des divisions euclidiennes et déterminer...
Une définition analytique du nombre π par le cosinus
Introduction Lorsque nous avons introduit l'exponentielle circulaire, les fonctions trigonométriques cosinus et sinus ont été définies comme sa partie réelle et sa partie imaginaire. Nous en avons alors tiré les expressions analytiques : \(\cos x=\sum_{n=0}^{+\infty}...
La mesure des angles de vecteurs : algèbre et analyse
Introduction Dans Angles de vecteurs : intuition géométrique et définition algébrique, nous avons défini et décrit le groupe des angles de vecteurs du plan euclidien de manière algébrique, en utilisant une relation d'équivalence sur les vecteurs unitaires. De...
Angles de vecteurs : intuition géométrique et définition algébrique
Les angles de vecteurs sont les angles orientés habituels de la géométrie euclidienne plane. Grâce aux ressources de la théorie naïve des ensembles, on les définit de manière purement algébrique grâce à une relation d'équivalence et aux rotations vectorielles du plan....
Rotations vectorielles du plan : l’approche « analytique »
Connexion
Bienvenue sur La Règle et le Compas ! Pour lire les articles du blog en intégralité, merci de vous connecter. Si ce n'est déjà fait, vous pouvez vous inscrire librement ici sur MATHESIS.
Explorer par Catégories
Algèbre
La théorie mathématique des opérations et des structures
Analyse
La théorie mathématique des processus infinitésimaux
Cinématique
La théorie mathématique du mouvement
Ensembles
La théorie fondamentale des multiplicités mathématiques
Fonctions
La théorie mathématique des relations entre variables
Géométrie
La théorie mathématique des formes et des transformations
Logique
Le traitement mathématique de la logique naturelle
Nombres
La théorie mathématique des nombres et leurs propriétés
Trigonométrie
La théorie mathématique des angles et longueurs
Recherche
Tous les Articles